Broome Clean Energy Study

Decarbonising the regions

Rob Phillips, Angus King, Len Bunn

Acknowledgements Whadjuk Noongar Boodjar

Header (Default Page Style) 💌

Broome Clean Energy Study 2022

This report demonstrated that electricity generation in the town of Broome can be achieved with over 80% renewable energy at three quarters of the price of gas-fired (LNG) generation. This will achieve total lifetime savings of \$321m.

Broome Clean Energy Study

- Following up on the 2018 Kimberley Clean Energy Roadmap
- Launch of Powermatch, our powerful new modelling tool
- Broader application in SEN's SWIS Decarbonisation Campaign

- Commissioned by Environs Kimberley and the Lock the Gate Alliance
- **Project work in 2022**

Key Finding

Electricity generation in Broome can be achieved with

- over 80% renewable energy
- at three quarters of the price of gas-fired (LNG) generation
- **Total lifetime savings of \$321m**

Outline

- Introduction
- Background
- Modelling
- Results
- Implementation
- **Energy Transition**
- Conclusion

Policy Environment

- WA Climate Change Policy
- Sectoral Emissions Reduction Strategy
- Climate Change Legislation later in 2023
 - reduce Gov't emissions by 80 per cent below 2020 levels by 2030

Broome

Context

- Population ~14,500, increasing in Dry Season
- Stand-alone 'macro grid'
- 40MW of LNG-fuelled generators
- 8.3 MW of rooftop solar constrained
- Current supply contract expires 2027
 - We've modelled for 2024 to give time for planning/construction

Weather Factors in Broome

Weather patterns - not much wind

Cyclone risk relatively low

Wet Season, Broome

10

Wind

2018 Results

Gurrbalgun

Beagle Bay

Rarrdjali

Maddarr La Djardarr Bay

Thunderbird Mine

Bidan

Jarlmadanga Burru 💆

Broome

Goolarabooloo

Monobon

200-1,000 People

Horizon Power Initiatives

since 2018

- Community batteries in Broome 1.1 MWh
 - Extra rooftop PV
- Distributed Energy Resources Manager
 - completely feasible to achieve
- "Our goal is that all Horizon 2025"
- 100% RE possible -

Wh not enough not cem (DERMS) technology es **Inetration of PV**

Shouseholds can have access to rooftop solar by

e contraction decade - ABC Radio interview

Outline

- Introduction
- Background
- Modelling
- Results
- Implementation
- **Energy Transition**
- Conclusion

Technical Terms

Energy capacities

- Generation technologies have capacities in Megawatts (MW)
- Batteries have capacities in Megawatt hours (MWh)
- Batteries have varying discharge times (1, 2, 4, 8 hours)
- A 40 MWh hour battery can deliver 10 MW of electricity for 4 hours
- Our modelling showed that 4 hour batteries were slightly better than 8 hour batteries

Modelling Background

Modelling is only as good as its assumptions

- Real world costs are 'Commercial in Confidence'
- **Reputable Australian cost estimates based on real projects**
 - Capital expenditure CAPEX
 - Operational expenditure OPEX
 - Fixed and Variable OPEX
- Scaled by remoteness factor and weather factor
- Levelised Cost of Energy

Levelised Cost of Energy

Allows comparison

Average total cost to build and operate a power-generating asset

• CAPEX + OPEX

over its lifetime (10-25 years)

divided by the total lifetime energy output (E_Y)

LCOE_{Tech} = (CAPEX+ <u>OPEX</u>fixed) / Ey + OPEXVariable + OPEXFuel

Technology Costs

Assumptions needed

- Annual 'Gencost' report (CSIRO and AEMO)
 - Projected over 10 years
- Weighted Average Cost of Capital 7.5%
- Carbon emissions per technology

Cost Assumptions

Used 2024 technology costs

- Broome contract expires in 2027
- Wind costs higher than 2018
 - recent publication with 'regional factors' pushed costs up
- **Battery costs much lower than 2018**
- Solar about the same

Carbon Price

\$60 per tonne

Australian Carbon Credit Units

• ACCU

Done before change of government

2023 ACCU cap \$75

SEN's Modelling Tools

SIREN - Powermatch

SIREN needs:

- Load Profile
- Technology parameters (PV, Wind)
- Weather data

Model generation plants to meet the load profile

Outputs

- modelled load profile and surpluses and shortfalls
- 8760 hours in a year

Powermatch

Evolution of old spreadsheet approach - much more powerful

Meets shortfalls by

- Scaling technologies
- Adding storage
- Minimising costs

Powerful 'genetic' modelling system

Once optimised, we can do 'batch' calculations to identify trends

Technol	ogy		Load	Onshore Wind	Roof
			Hourly	Hourly Gen	Hour
Hour	Period		(MWh)	(MWh)	(MW
1	2017-01-01	0(12.864	72.33	-
2	2017-01-01	0.	12.554	73.64	
3	2017-01-01	0:	12.265	70.50	
4	2017-01-01	0:	12.125	61.30	
5	2017-01-01	04	12.037	46.56	
6	2017-01-01	0	11.702	43.12	
7	2017-01-01	00	12.226	34.85	
8	2017-01-01	0	13.638	34.61	
9	2017-01-01	0	15.134	32.39	
10	2017-01-01	09	16.456	27.79	
11	2017-01-01	1(17.236	26.06	
12	2017-01-01	1	17.699	24.70	
13	2017-01-01	1:	18.019	22.38	
14	2017-01-01	1;	18.341	19.39	
15	2017-01-01	14	18.521	16.69	
16	2017-01-01	1	18.798	14.86	
17	2017-01-01	1(18.599	13.98	
18	2017-01-01	17	18.047	14.39	
19	2017-01-01	18	17.511	17.73	
20	2017-01-01	1	17.579	21.83	
21	2017-01-01	2(16.623	27.74	
22	2017-01-01	2	15.337	32.13	
23	2017-01-01	2:	14.020	28.59	
24	2017-01-01	2:	12.855	18.85	

Outline

- Introduction
- Background
- Modelling
- Results
- Implementation
- **Energy Transition**
- Conclusion

Modelling

Three scenarios

- Existing gas-fuelled generation
- PV and battery
- Wind, PV and Battery

LNG-only Generation

PV and Battery

- **Overview Results**
- **No Carbon Price**
- Flat minimum at 80% of LNG cost
- \$60 Carbon price
- 73% of LNG cost
- \$78 / MWh less than LNG

How did we achieve this?

Genetic optimisation

- Mutate the 'population'
- Find the best mutation
- **Repeat until no change**

Choose	e Optimal Generato	r Mix 🛛 😣
Facility	Lowest Weight	Your pick
Onshore Wind	12.6 MW	12.6 MW
Rooftop PV	0.0 MW	0.0 MW
Fixed PV	25.0 MW	25.0 MW
Battery (4hr)	37.0 MWh	37.0 MWh
Gas-LNG	24.0 MW	24.0 MW
Load%	99%	99%
RE%	61%	61%
LCOE	\$192.60	\$192.60
CO2	44.8K	44.8K
Surplus%	3%	3%
Cost	\$25.2M	\$25.2M
Quit	Lowest Weight	Your pick

Collating Results

Add results to 'batch' file

For each 'Run'

- Add results to 'batch' file
- Easy comparison of results

Weaknesses

- May be false minima
- Can't see trends
- Less LNG than installed

	B4-25	B4-25	B4-50	B4-50	B∠
lodel Label	05-12 17:32	05-12 17:37	05-12 17:34	05-12 17:35	05
apacity (MW)	MW	MW	MW	MW	M
Inshore Wind					
ixed PV	52.00	28.00	30.00	29.00	
attery (4hr)	25.00	24.00	48.00	40.00	
atterv (8hr)					
Bas-LNG	24.00	24.00	24.00	26.00	
otal	101.00	76.00	102.00	95.00	
arbon Price	60.00	60.00	60.00	60.00	

Batch Modelling

Run a series of models around the optimised minimum

• Explore trends

- Choose a fixed amount of PV (10-150MW)
- Vary the amount of battery needed (26 increments)
- 520 permutations
- Semi-automatically identify best solution for each amount of PV

·	Α	В	С	
1			B25 PV25	B
2	Model Label	start	05-10 18:27	0
3	Capacity (MW/MWh)		MW	N
4	Onshore Wind			Γ
5	Fixed PV		23.00	
6	Battery (4hr)		25.00	
7	Battery (8hr)			
8	Gas-LNG	30.00	24.00	
9	Total	30.00	72.00	
10				
11	LCOE (\$/MWh)			
12	Onshore Wind			
13	Fixed PV		61.86	ļ
14	Battery (4hr)		320.26	
15	Battery (8hr)			L
16	Gas-LNG	248.70	261.32	1
17	Total	248.70	193.14	
18	Adjusted LCOE	248.70	196.18	l
19				
20	Carbon			L
21	Carbon Price	60.00	60.00	
22	Carbon Cost	5,737,800	3,579,681	
23	LCOE (incl. CO2)	292.50	223.50	
24				
25	RE			L
26	RE %age	0.0%	34.9%	_
27	Storage %age		2.9%	Ļ
28	RE %age of Total Load	0.0%	37.7%	<u> </u>
29				Ļ
30	Emissions (tCO2e)			Ļ
31	Onshore Wind			
32	Fixed PV			_
33	Battery (4hr)		124	-
34	Battery (8hr)			Ļ
35	Gas-LNG	95,630	59,538	Ļ
- 36	lotal	95.630	59.661	.1

Outline

- Introduction
- Background
- Modelling
- Results
- Implementation
- **Energy Transition**
- Conclusion

PV & Battery Results

PV & Battery Overview

Narrow cost range

But decreasing carbon emissions

Fixed PV (MW)	LCOE (\$/MWh)	Battery (4h) (MWh)	RE % of Loa
20	\$235	0	32
25	\$229	10	38
30	\$225	30	45
35	\$222	50	52
40	\$220	70	58
45	\$218	100	65
50	\$216	130	72
55	\$215	150	78
60	\$215	160	82
65	\$216	162	84
70	\$218	162	86
80	\$223	164	88
90	\$230	166	90

160

Add Wind Generation

4.2MW Vestas V117 cyclone-rated turbines

• Modelled for 1-5 turbines	224.00
	223.00
Optimised PV & Battery	222.00
	221.00
D)/ alightly battag	्र २२०.००
PV slightly better	219.00
Costs about the same	ш 218.00
Costs about the same	217.00
• Lower RE %	216.00
	215.00
• Wind speed low in Broome	214.00
	213.00
Cvclone risk	50.070

Performance of Best Combined Wind/PV options

The Four Optimal Cost Solutions

PV (MW)	40	50	60	80
COE (\$/MWh)	\$220	\$216	\$215	\$223
attery (MWh)	70	130	160	164
LNG (MW)	30	30	30	30
of Total Load	58%	72%	82%	88%
sions (tCO ₂ -e)	44,834	32,278	24,457	20,756
Load				
RE (GWh)	57	60	62	65
Battery (GWh)	18	34	45	50
LNG (GWh)	55	36	24	16
urplus (GWh)	10	9	17	52

PV (MW)

CO2-e Emissions Vs PV

CO2-e Emissions (tonnes)

PV (MW)

Contribution to Load at varying amounts of PV

Capital Expenditure

The four 'optimal' cost solutions

PV (MW)	40	50	60	80
LCOE (\$/MWh)	\$220	\$216	\$215	\$223
Battery (MWh)	70	130	160	164
LNG (MW)	30	30	30	30
RE % of Total Load	58%	72%	82%	88%
CAPEX (\$m)	\$131m	\$167m	\$191m	\$218m

Outline

- Introduction
- Background
- Modelling
- Results
- Implementation
- **Energy Transition**
- Conclusion

Rooftop vs Utility PV

Solar Farm: 20 - 60 MW

-
ļ
ļ
ļ
ļ
ļ
ļ
ļ
ļ
ļ

Implementation

Staged approach to decarbonisation

- Cost curve flat as PV increases
- How to manage the Rollout?
- Need large amount of PV by 2027
 - to replace the gas generators
- Mixture of Utility and Rooftop PV?
 - Ultimate 50 50 mix

16	50
_	
_	

Assumed Scenario for 2027

- 40 MW Utility Solar, operational by 2027
- 10 MW of Rooftop Solar, built out to 40 MW past 2027
- **Battery Storage plant sized ultimately for 164 MWh (80 MW PV)**,
 - initially 130 MWh storage (50 MW PV)
- 30 MW of peaking gas generation low utilisation

New or Refurbished Gas Generators?

In a gas-only scenario, new generators will be needed

Under the RE scenario:

- Gas generators will be used sparingly
- Don't need all at once
- So why install new ones?
- Refurbish the old ones
- We assumed refurbishment is 40% of new

160

Capital Cost Summary

CAPEX new gas generators: \$54m

nology	Capacity (MW)	CAPEX Refurb. (\$m)
ed PV	40	\$51
op PV	10	0
ry 4hr	130	\$29
^r Plant	164	\$24
ration	30	\$22
Total		\$126

Lifetime Costs

Lifetime savings over 25 years: \$321m

Fixed PV\$144\$144Rooftop PV\$36\$36Battery 4hr\$158\$158LNG - new and refurbished\$369\$298
Rooftop PV\$36\$36Battery 4hr\$158\$158LNG - new and refurbished\$369\$298
Battery 4hr \$158 \$158 LNG - new and refurbished \$369 \$298
LNG - new and refurbished \$369 \$298
Proposed scenario Total \$707 \$636
100% gas \$957

Expenditure Summary

Technology

Capital expenditure (up fr

Lifetime costs (25 years

An extra up-front expenditure of \$72m is offset by a saving in total lifetime costs of \$321m.

	82% RE	New LNG	Difference
ront)	\$126m	\$54m	-\$72m
s)	\$636m	\$957m	\$321m

This is a great story!

Electricity generation in Broome can be achieved with

- over 80% renewable energy
- at three quarters of the cost of gas-fired (LNG) generation
- **Total lifetime savings of \$321m**

But wait. There's more!

Outline

- Introduction
- Background
- Modelling
- Results
- Implementation
- **Energy Transition**
- Conclusion

Transition to 100% Renewables

What are some of the issues?

- Weather factors
- Fuel factors

Seasonal Factors

Wet vs Dry

- Jun-Aug almost 100% RE
- Dec-Mar *some* LNG needed

0:00

4:00 8:00 12:00 16:00 20:00 23:00 Hour of the Day

July vs March

Long Duration Energy Storage

- LNG & Diesel
- but emissions continue
- **Potential alternatives?**
- Pumped hydroelectricity
- In-stream tidal turbines

Immature technology

July vs March

Long Duration Energy Storage

- **LNG & Diesel**
- but emissions continue
- **Potential alternatives?**
- **Pumped hydroelectricity**
- In-stream tidal turbines
- Hydrogen/Ammonia

Surplus Renewables

What to do with it?

- Use the surplus to produce hydrogen as a fuel
- Other opportunities?

	_
0	
_	
-0	
	1(

Surplus Renewables

Seasonal factors for Hydrogen

Little surplus when needed

Wet

Lots when it's not

-	
_	
1	
a b	
Nº.	
AY .	
· ·	
N	
S	
<u>, </u>	
<u>.</u>	
<u>,</u>	
<u>.</u>	
×.	
×.	

Hydrogen Issues

Not an immediate solution

- Generation electrolysis solvable
- Storage difficult need 6 months' supply
- Transport very difficult pipe leakage
- Maybe ammonia by road train

Phenomenal rate of investment and advancement in H₂

LNG Issues

In a high RE scenario

Currently 1 road train per day

• Will reduce to 1 per week

Stored in an insulated tank

- Gas 'bleeds off' as it warms what if it's not needed?
- Losses and leakages flaring?

Financial challenges for gas supplier

- Shipping LNG from Karratha will become uneconomic
- Stranded assets

Outline

- Introduction
- Background
- Modelling
- Results
- Implementation
- **Energy Transition**
- Conclusion

Summary

100% RE currently not financially feasible

• seasonal factors

PV (N LCOE (\$/ Battery (LNG (I RE % of To CAPEX

ЛW)	40	50	60	8
/MWh)	\$220	\$216	\$215	\$2
(MWh)	70	130	160	16
MW)	30	30	30	3
otal Load	58%	72%	82%	88
(\$m)	\$131m	\$167m	\$191m	\$21

Horizon Power

- More work needed
- **One of the most progressive power utilities in Australia**
- Future Energy Systems Group
- **Relatively small steps towards 'proof of concept'**
- Hamstrung by government rules minimum cost
- Project Eagle Energy and Governance Legislation Reforms
 - New project rules (2023) to include reduced emissions as well as lowest cost
- HP can now go further!

Horizon Power

- Determine the optimal mix of rooftop and utility PV
- Commission a 20+ MW solar farm by 2027

Broome community:

- **Engage proactively with Horizon Power**
- **Continue to advocate for higher levels of rooftop PV and supporting battery** storage

Conclusion

Roll this out!

- High levels of RE across regional and remote WA
- **Powermatch is a powerful tool**
- **Applying it to the SWIS**
 - Solid data around replacing coal generation

Advocacy

- Pointing out that the State Government needs to do much more
- and quickly!

The future is not so gloomy!

東太

LCOE vs % Renewable Energy

Explain the hockey stick

LCOE Vs percentage Renewable Energy

Renewable Energy percentage of Total Load

2		
	104	n Di

